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This paper contains theoretical and experimental results on the relative motion of
two pulsating spherical bubbles along their line of centres, in a liquid subjected to an
acoustic field. The motion is caused only by the secondary Bjerknes forces. The linear
theory for the secondary Bjerknes forces is modified by introducing a model for the
coupling between the pulsations of the interfaces. The secondary effects introduced by
this model are determined by the frequency indices of the bubbles, defined as the ratio
of the forcing frequency to the resonance frequency of each bubble. The equations of
motion are set up with the conservative Lagrangian formalism. This approach allows
an analytical study of all the possible patterns of motion and the identification of
the set of governing parameters: total energy and interaction coefficient. A pair of
bubbles driven far from their resonance frequencies may attract or repel, depending
on whether their frequency indices are respectively on the same side or on either side
of unity. For forcing frequencies close to resonance, the proposed model predicts a
new pattern of relative motion, namely a periodic motion (oscillations) around an
equilibrium bubble separation. The experimental study identifies this new periodic
pattern of motion, for acoustically levitated bubbles of nearly equal sizes, forced
near their resonance frequency. A quantitative study on the variation of the relative
velocity with the separation between the bubbles shows that the conservative model
for the motion holds for large and moderate separations. The following information is
reported: (a) a classification of the pairs of bubbles, based upon their phase difference
in oscillations; (b) a model for the coupling of the pulsations of two bubbles; (c)
formulas for the interaction force field of two pulsating bubbles, for all of the
categories; (d) a study of all possible patterns of relative motion (collisions, scattering
and oscillations), with their conditions of occurrence; (e) experimental data for two
attracting bubbles; (f) experimental data for two oscillating bubbles.

1. Introduction
The interaction between a single bubble and a sound wave is named the ‘primary

Bjerknes force’ after Bjerknes (1906). If the forcing frequency is less than the resonance
frequency of the volume pulsations of the bubble, the primary Bjerknes force is
oriented along the gradient of the amplitude of the sound wave, and the bubble
travels towards pressure anti-nodes. If the forcing frequency is higher than the
resonance frequency of the bubble, the primary Bjerknes force is oriented against the
gradient of the amplitude of the sound wave, and the bubble moves towards pressure
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nodes. Eller (1968) provides the following mathematical description for the primary
Bjerknes force, derived for the standing waves case:

FA =
2π2R0

3A2

3P0λ(1− ω2/ω0
2)

sin
4πz

λ
, (1)

where R0 is the equilibrium radius of the bubble, A is the amplitude of the standing
wave, P0 is the hydrostatic pressure at the location z of the centre of bubble, ω is the
forcing angular frequency, ω0 is the resonance angular frequency of the bubble for
pure radial pulsations and λ is the wavelength of the standing wave.

Bjerknes (1906) discovered that two pulsating bubbles attract or repel each other
when they oscillate in or out of phase, respectively. The force causing attraction or
repulsion is named the ‘secondary Bjerknes force’. The primary and the secondary
Bjerknes forces were explained by postulating that every body that is moving in an
accelerating fluid is subject to a ‘kinetic buoyancy’ proportional to the product of the
acceleration of the fluid, a, multiplied by the mass, ρV , of the fluid displaced by the
body: FB ∼ ρVa. Bjerknes hoped to use this phenomenon to explain the effects of
electromagnetism and gravitation; the analogy with these forces was supported by
the fact that the secondary Bjerknes force is proportional to the sizes of the bubbles
and inversely proportional to the square of the distance between their centres.

Dynamical effects associated with the secondary Bjerknes forces are reported in a
study concerning cavitation by Kornfeld & Suvorov (1944). They conducted an exper-
imental study of the dynamics of several bubbles close to an oscillating piston, driven
around 7.5 kHz. They describe not only the attraction of interacting bubbles, followed
by coalescence, and repulsion of small bubbles by a large one, but also a strange
zig-zag motion (‘dancing bubbles’). The phenomenon received only a qualitative
explanation, based on the instability of the motion dominated by the inertia forces.

Blake (1949) reports qualitative experiments with bubbles which form by cavitation
in a liquid subject to a 60 kHz acoustic standing wave. Bubbles form at the pressure
anti-nodes and migrate to pressure nodes where they ‘seem to coalesce’ and form
bubbles ‘up to a millimetre or so in diameter’. His opinion is that the secondary
Bjerknes forces can be observed only at small separations, and their effect is, at most,
to cause the coalescence of the bubbles.

In a theoretical review concerning possible technologies for degassing liquids, Ka-
pustina (1970) has derived a mathematical model for the attraction of two interacting
bubbles in an acoustic field. Drag forces are neglected if the distance r between the
centres of the bubbles is larger than a certain r′. Attraction forces yield in this approx-
imation a decrease of r proportional to t3/2. For distances smaller than r′, a drag term
is included in the equation of motion, and a necessary condition for coalescence is
derived. Kapustina has studied the patterns of motion due only to the attractive forces.

Another theoretical treatment of the problem of the secondary Bjerknes interactions
is contained in the paper by Zabolotskaya (1984). Here, the Lagrangian formalism is
applied to a system of two bubbles. Considering the potential and the kinetic energy
for the mass of incompressible liquid surrounding the bubbles, the method yields a
system of two coupled nonlinear ODEs. The equations are decoupled when the bubble
spacing is large enough compared with their size and they reduce to the well-known
Rayleigh–Plesset equation for each bubble. Bubbles are assumed to have only radial
oscillations, preserving spherical form in time. A certain form of the induced velocity
fields is assumed in order to solve the equations. The results of this approach provide
the normal modes of pulsation of the bubbles, which change with the distance between
the bubbles. More interestingly, it is found that the Bjerknes forces may change sign
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during the motion, from an attractive force to a repulsive one, when the two bubbles
are driven at a frequency which is slightly different from their resonance frequencies.
The interaction force has a very complicated dependence on the relative distance r,
and no attempt has been made to obtain analytic solutions. However, three patterns of
interaction are identified: attraction at all distances; repulsion at small r, attraction at
large r, with a stable equilibrium point (this equilibrium point ‘could possibly account
for the coalescence of bubbles into swarms’); and attraction at small r, repulsion at
large r, with an unstable equilibrium point. The pattern of interaction is strongly
dependent on the driving frequency ω, but not on the pressure amplitude A.

Doinikov (1996) has studied the interaction between a gas bubble and a drop, caused
by shape oscillations of both interfaces in an acoustic field. The theory developed
by Doinikov allows numerical evaluation of the interaction force using several terms
of an infinite series, defined by recurrence formulas. Sample computations show that
when the forcing frequency is close to the natural frequency of the bubble or the
drop, the force can change its sign with the separation, from attraction to repulsion.
However, this study is limited to some numerical examples and does not allow an
evaluation of the general dynamic behaviour of the system.

Oguz & Prosperetti (1990) have constructed a model for the interaction of two
gas bubbles as an application of a general ‘virial theorem’ derived from Bernoulli’s
integral for an inviscid, irrotational, unsteady flow. They have assumed a certain
form for the potential of the flow field in the incompressible liquid surrounding the
bubbles and have obtained a system of nonlinear coupled ODEs. The ODEs are
solved numerically in the small time scale of bubble pulsations, without averaging
over one period. This technique becomes computationally exhaustive at high forcing
frequencies, and it is only practicable for small time intervals of study. The numerical
solutions show only two patterns of motion of the system, at least for the limited
time intervals (15–25 periods of the applied pressure wave) for which the solution is
constructed: attraction and repulsion. An interesting new effect, unpredicted by the
linear theory, is that the pattern of interaction may change when the amplitude of the
forcing signal is increased. However, the case of a change in the sign of the forces as
the motion of the bubbles proceeds is not revealed by this nonlinear numerical study.

The inviscid theoretical approach to the secondary Bjerknes forces of Pelekasis
(1991) and the computational results of Pelekasis & Tsamopoulos (1993a, b) have
produced interesting results in a certain range of frequencies, pressure amplitudes
and bubble sizes. The surface of each bubble is allowed to deform from the spherical
form. The Laplace equation is used to determine the potential of the flow field in the
axisymmetric case. This approach predicts repulsive forces if the forcing frequency
is located between the two resonance frequencies for volume oscillations of the two
unequal bubbles and attractive forces for any other case, including equal-size bubbles.
The results of the simulations show agreement with the linear theory with respect to
the influence of the separation distance, volumes of the bubbles, forcing amplitude and
frequency upon the average acceleration acquired by the bubbles in relative motion.
An important nonlinear result is the fact that when the Bond number, Bo = ρāR2/σ,
based on the average acceleration, ā, the equilibrium radius, R, and the properties of
the liquid (ρ the density and σ the surface tension coefficient), lies above a critical
value, spherical-cap shapes (surface deformations) appear at the back side (with
respect to the acceleration) of the bubbles. However, these numerical simulations are
computationally expensive, and they break down easily as the motion proceeds. The
numerical stability requirements impose restrictions on the range of Weber and Bond
numbers that could be studied with this technique.
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Theoretical predictions for bubble–bubble interaction are directly compared with
experimental data in the paper by Crum (1975). He has studied experimentally the
interaction between air bubbles levitated in an oscillating water tank which is driven at
low frequencies (60 Hz) by a mechanical shaker. The gradient of pressure in the plane
of motion of the bubbles is measured and found very close to zero. The amplitude
of radial oscillations is reported to be very large in these conditions (0.26 mm for
a bubble radius of 0.53 mm). In addition, he has provided a simple model for the
secondary Bjerknes forces by averaging over one time period the sound field radiated
by one bubble at the location of the other one. The result is the following formula
for the secondary Bjerknes force:

FB = −2πρω2R2
01R

2
02

r2
(δR1)(δR2) cosϕ. (2)

In this equation, ρ is the density of the surrounding liquid, ω is the angular forcing
frequency, δRi are the amplitudes of the radial pulsations, and ϕ is the phase
difference between the radial oscillations of the bubbles. The equilibrium radii of
the two bubbles are denoted by R01 and R02. The magnitude of these interactions is
found to be almost one third of the buoyancy force on the bubble for a radius of
1 mm. The dynamics of a system consisting of two equal bubbles is then studied with
a simple algebraic model. Inertia forces are neglected and the value of the relative
velocity is computed by balancing only the interaction force and the drag on the
bubble. Crum’s theoretical results compare well with his experimental data at low
oscillation frequencies. However, his approach uses an undamped pulsation of the
interface. Consequently, the phase shift between the harmonic response of the bubble
and the unsteady external pressure field can take only two values: 0 or π. This renders
only two patterns for the motion, namely attraction or repulsion.

The present paper modifies Crum’s theory by considering the interface damping
described with the linear theory for a single oscillating bubble of Prosperetti (1977)
and by introducing a model for the coupling between bubble pulsations. The new
formulas for the interaction force field derived with these changes are used in a
comprehensive analytical approach, verified by new experimental data.

In § 2 we present the equations governing the interactive dynamics of two bubbles.
Section 2.1 provides the equation for the volume oscillation of a simple bubble
subject to an external forcing. Section 2.2 presents the relations for the pressure
waves generated by the radial pulsations of each bubble, followed by § 2.3 which
provides the force generated by these pressure waves on the neighbouring bubble.
Next, the bubble pairs are classified based on the phase difference between their
oscillations (§ 2.4). A new model is presented in § 2.5 for the coupling of the two radial
pulsations. Finally, the interaction force, with this coupling effect included, is derived
in § 2.6 for different classes of bubble pairs. The dynamics of the two interacting
bubbles, moving along their line of centres is presented in § 3. Experiments, which
support the theoretical findings, are presented in § 4, followed by a summary of the
results and concluding remarks in § 5.

2. Physics of bubble–bubble interaction
2.1. Harmonic response of a single bubble in an acoustic field

Consider a single bubble, undergoing volume oscillations, in an unbounded liquid
domain. The governing equation for bubble pulsations can be derived from the
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equilibrium condition for the normal stresses at the interface. The result is the well-
known Rayleigh–Plesset (RPNNP) equation:

RR̈ + 3
2
Ṙ2 =

1

ρ
∆p, (3)

where

∆p = pint(t)− 2σ

R
− 4µṘ

R
− pext(t).

In these relations, µ is the dynamic viscosity of the liquid, R(t) is the time-varying
radius of the bubble, pint and pext are the internal and the external forcing pressure
fields, respectively. Assume that the bubble is exposed to a periodic pressure field,
represented by

pext(t) = P0 + A cosωt, (4)

where P0 is the hydrostatic pressure at the location of the bubble centre and A is the
amplitude of the forcing field of frequency f = ω/2π. The pressure at the interface
can be assumed to be spatially uniform if the wavelength of the forcing wave is much
larger than the bubble radius. For small amplitudes, Prosperetti (1977) has used a
linearized form of (3) to obtain a harmonic solution for bubble radius variation:

R(t) = R0[1 + ε cos (ωt+ ϕ)], (5)

where the response amplitude, ε, and the response phase shift with respect to the
external pressure field, ϕ, are computed with the following relations:

ε =
A

ρω2
0R

2
0

(
(q2 − 1)2 + 4δ2q2

)1/2
(6)

ϕ = arctan
2δq

q2 − 1
. (7)

Here, the frequency index q ≡ ω/ω0, and the dimensionless damping coefficient
δ ≡ β/ω0, are defined using the resonance frequency ω0 for volume oscillations
(Prosperetti 1984a):

ω0 =

(
3k

(
p0

ρR2
0

+ 2
σ

ρR0
3

)
− 2

σ

ρR0
3

)1/2

, (8)

where c is the speed of sound in the liquid phase. Also, the linearized resultant
damping β = βv + βth + βac contains viscous, thermal and acoustic effects, defined as

βv = 2
µ

ρR0
2
, βth = 2

µth

ρR0
2
, βac =

ω2R0

2c
. (9)

Thermal damping effects, µth, are determined using a procedure involving the proper-
ties of the gas inside the bubble (molecular weight Mg , thermal diffusivity Dg , perfect
gas constant Rg , adiabatic coefficient k and density ρg), properties of the liquid (den-
sity ρ, thermal diffusivity D) and the temperature in the liquid T∞. The procedure is
based on a solution for the continuity, momentum and energy equations for radial
flow inside the bubble.

Equation (7) contains the influence of the frequency index upon the phase of
the pulsations. The frequency index depends on the bubble size (which modifies
the resonance frequency ω0) and on the applied frequency ω. Figure 1 presents the
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Figure 1. Response of a bubble to a sound field: phase shift ϕ.

variation of the phase shift ϕ with both of these important physical parameters as
described by (7). For a fixed forcing frequency, the phase shift can take any value
in the interval [0, π], when bubbles of various radii are considered. Bubbles having a
frequency index q ≡ ω/ω0 less than 1 will oscillate in opposite phase to the external
pressure field (ϕi ≈ π), while bubbles with q larger than 1 pulsate in phase with the
primary wave (ϕi ≈ 0). Even though the transition from q < 1 to q > 1 is sharp,
because of the small value of damping coefficient δ, there is always a range of values
for the radius of the bubble which assures q ≈ 1 and implicitly, ϕi ≈ π/2. The graph
shows how two nearly equal bubbles (of close radii, 0.1365 and 0.146 mm, represented
by vertical dotted lines) can pulsate at phase differences of 0, π/2 or π, when driven
at different frequencies (21.5, 22.5 and 23.5 kHz, respectively). These computations
are made considering air bubbles in water at 20 ◦C, a forcing amplitude A = 300 Pa
and normal atmospheric pressure above the free surface of the water.

2.2. Secondary pressure field generated by bubble pulsations

Consider a single bubble undergoing volume pulsations, while its shape remains
spherical. The secondary pressure field induced by its pulsations in the incompressible
liquid surrounding the bubble is (Prosperetti 1984b)

p′(r, t) =
V̈

4πr
− 1

2
ρṘ2

(
R

r

)4

. (10)

The second term can be neglected after performing a scale analysis as described next.
Assume that the bubble is driven by a pressure field (4) and its response is a harmonic
oscillation of the radius (5). We now compare the amplitudes of the second and the
first terms in equation (10): ∣∣∣∣ρṘ2R4/(2r4)

ρV̈/(4πr)

∣∣∣∣ ≈ ε

2(r/R)3
, (11)



Dynamics of two interacting bubbles in an acoustic field 143

for small values of the radial response ε. Equation (11) shows that for large distances
r/R from the bubble, and small forcing amplitudes the second term on the right-hand
side of equation (10) is relatively small and can be neglected. Therefore, the oscillating
pressure field p′(r, t) generated by bubble pulsations is

p′(r, t) ≈ V̈

4πr
=
R

r

(
2Ṙ2 + RR̈

)
.

A comparison between the amplitudes of the two terms in the V̈ expression reveals
that ∣∣∣∣2Ṙ2

RR̈

∣∣∣∣ ∼ O(ε).

Therefore, to the first order in ε, the secondary pressure field induced by bubble
pulsations is

p′(r, t) ≈ −ρω
2R3

0ε

r
cos (ωt+ ϕ). (12)

The amplitude and phase of the sum of the primary and the secondary pressure
fields vary spatially with distance r from the centre of the bubble. When the phase
difference ϕ approaches either of the limits (0 or π), only the amplitude of the pressure
distribution is a function of r and the phase shift is spatially uniform.

For bubbles smaller than the resonance size and oscillating out of phase with
respect to external forcing, ϕ ≈ π, the amplitude of the pressure field around the
bubble is increased. The unsteady part of the pressure field around the bubble is

p(r, t) ≈
(
A+

ρω2R3
0ε

r

)
cos (ωt). (13)

For bubbles larger than the resonance size oscillating in phase with the external
forcing, ϕ ≈ 0, the amplitude of the pressure field is decreased. The unsteady part of
the pressure field around the bubble is

p(r, t) ≈
(
A− ρω2R3

0ε

r

)
cos (ωt). (14)

2.3. Secondary Bjerknes forces

Consider now two gas bubbles of nominal radii R01 and R02, driven by a pressure
field (4), of small amplitude A, into volume pulsations, Ri(t) = R0i[1+εi cos (ωt+ ϕi)],
with response amplitudes εi and phase shifts ϕi. The amplitude of the forcing wave is
assumed to be spatially uniform. This assumption is valid when the bubble separation
is small compared with the wavelength λ, or when the forcing signal is a plane wave
and the bubbles remain in the wavefront plane at any moment of their motion. The
linear theory used by Crum (1975) replaces the effect of the secondary pressure field
induced by bubble 1 pulsation upon bubble 2 with the time average taken over one
period of the surface integral of this pressure field on the surface of bubble 2. The
information produced within a period T = 1/f = 2π/ω is lost, but the interaction is
reduced to a force-field-type problem, similar to gravitational and electrostatic particle
interactions.

Since λ� R02, the integral of p′1 over the surface S2 of bubble 2 is approximated as∫ ∫
S2

p′1(r, t) n̂2 dS ≈ V2(t)∇p′1, (15)
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where n̂2 is the outward normal to the interface S2, and V2 is the volume enclosed by
S2. For any type of volume pulsation, the force acting on bubble 2 is

F12 = −〈V2(t)∇p′1(r, t)〉, (16)

where 〈 〉 symbolizes averaging over one period of the forcing field (Prosperetti 1984b).
The distance r is measured between the bubble centres and the sign convention is
that negative values of the force signify ‘attraction’ and positive values represent
‘repulsion’.

Let us consider that the two bubbles respond to the external forcing with pure
radial harmonic pulsations, described by equation (5). The time-varying volume of
bubble 2 is simply

V2(t) = 4
3
πR3

02[1 + ε2 cos (ωt+ ϕ2)]
3.

The assumption r � R01, R02 allows the secondary pressure field p′1 induced by bubble
1 pulsation to be written from (12) as

p′1(r, t) = −ρω
2R3

01ε1

r
cos (ωt+ ϕ1).

After averaging in time over one period 2π/ω, the magnitude of the force F12 acting
on bubble 2 along the line of centres, is derived from equation (16) as

F12(r) = −2πρω2R3
01R

3
02

r2
ε1ε2 cosϕΨ (ε1, ε2, ϕ), (17)

where ϕ ≡ ϕ2 − ϕ1 is the phase difference between the two pulsations, and

Ψ (ε1, ε2, ϕ) = 1− ε1ε2

cosϕ
+ 1

4
(ε2

1 + ε2
2) + 2ε1ε2 cosϕ+ O(εi1ε

j
2), (18)

with i + j > 3. The force F21, acting on bubble 1, has the same magnitude, but the
opposite orientation.

Equation (17) shows the higher-order nature of the bubble–bubble interaction force,
since its magnitude is O(ε1ε2). Hence, a rigorous application of the linear theory will
render zero interaction forces. Previous analytical studies on secondary Bjerknes forces
have considered only the first term in function Ψ and have obtained the well-known
formula

F12(r) = −2πρω2R3
01R

3
02

r2
ε1ε2 cosϕ, (19)

which is identical with equation (2), after substituting the dimensional response
amplitudes (δRi) = εiR0i. This approach is justified by the fact that cosϕ is O(1) when
ϕ1, ϕ2 = 0 or π, and function Ψ (ε1, ε2, ϕ) ≈ 1.

Analysis of equation (19) shows that a pair of bubbles which are pulsating in phase
(ϕ = 0) or at a phase difference less than π/2 will engage in an attraction motion,
for all distances r between the centres of mass. Also, a pair of bubbles pulsating in
opposite phase (ϕ = π) or at a phase difference greater than π/2 will increase distance
in a separation motion for all distances r. Two bubbles having phase difference of
ϕ = π/2 are not supposed to interact according to this formula, sinceF12 =F21 = 0.

A pair of bubbles both driven close enough to resonance frequency, one such that
ϕ1 ≈ 0 or π, and the other such that ϕ2 ≈ π/2, can have the following consequences:
(a) higher values for εi, implied by the near resonance forcing; (b) phase difference
of ϕ ≈ π/2, hence cosϕ ∼ O(ε1ε2); and (c) coupling between the two pulsations,
through the modification of the amplitude of the pressure field around bubble 1, as
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described in § 2.2. In these conditions, the second term in the function Ψ becomes
O(1) and therefore

Ψ (ε1, ε2, ϕ) ≈ 1− ε1ε2/ cosϕ.

The new force field formula obtained with this approximation is

F12(r) = −2πρω2R3
01R

3
02

r2
ε1ε2(cosϕ− ε1ε2). (20)

Beside this change in the approximation level, the coupling between the two pulsa-
tions, through the induced secondary oscillating pressure fields, will be implemented in
the force field model. The secondary pressure field modifies the pressure distribution
around the two bubbles and the amplitude of the effective forcing on each bubble
changes with the separation distance. This change in forcing leads to a change in the
phases ϕi and amplitudes εi of the responses. Hence, the difference (cosϕ−ε1ε2) varies
as the distance r changes in time. Eventually, the motion can start at positive values
for this difference, resulting in attraction forces. As the relative distance decreases,
the difference becomes negative and the interaction forces become repulsive. This
behaviour may repeat itself, resulting in a new pattern of translational oscillations of
the pair of bubbles.

2.4. Classification of binary systems of bubbles

The above changes in the interaction force description are significant within a certain
range of forcing frequencies and bubble sizes. A classification of the bubble pairs
is necessary to identify the conditions requiring the use of the new model for the
interaction force. For single bubbles, the frequency index q, defined with respect to
the resonance frequency for linear volume oscillations ω0 is used to classify the types
of pulsations. A bubble driven below the resonance frequency has qi < 1 and a
phase ϕi ≈ π with respect the forcing wave. A bubble driven above the resonance
frequency has qi > 1 and the phase ϕi ≈ 0. If the forcing is close to the resonance
frequency then qi ≈ 1 and ϕi ≈ π/2. Equation (17) imposes only the phase difference
ϕ as the criterion for classifying the interaction between two bubbles: ϕ = 0 leads
to attraction, while ϕ = π results in repulsion forces. Our new model, taking a more
detailed approach to how this phase difference is formed, proposes the following
classification for binary systems of bubbles:

1. Non-resonant pair : ϕ1 and ϕ2 are both far from π/2 (q1, q2 are far from 1).
Here, the interaction force is accurately described by equation (19). Attraction and
repulsion are the only patterns of motion possible for this category. There is no
equilibrium value for the distance r.

2. Resonant pair : One phase shift (take ϕ1 for example) is close to π/2 (q1 ≈ 1)
and the other (ϕ2) approaches π (q2 < 1), while R01 and R02 have close values. In
this case, the phase difference is ϕ ≈ π/2 and cosϕ ∼ O(ε1ε2). Hence, use of (20) in
computing the interaction force is appropriate. The amplitude of the pressure field
around bubble 1 is increasing as the separation distance r decreases, and so is the
response amplitude ε1. In certain conditions, the relative motion could start with an
attraction (Ψ > 0), but as the term ε1ε2 becomes larger, the sign of Ψ turns negative
and the interaction becomes a repulsion. This case makes possible the existence of a
stable equilibrium value for r.

3. Anti-resonant pair : ϕ1 ≈ π/2 (q1 ≈ 1) and ϕ2 ≈ 0 (q2 > 1), while R01 and R02

have close values. Again, equations (18) and (20) are used to compute the interaction,
but in this case the effect of coupling is a decrease of ε1 as the separation distance
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becomes smaller. If the relative motion starts with an attraction, due to Ψ > 0,
the term ε1ε2 becomes even smaller during the motion, and the attraction pattern is
enhanced. If it starts with an repulsion, due to Ψ < 0, then ε1ε2 increases and the
separation forces grow. Thus, this case results in the possibility of having an unstable
equilibrium value for r.

2.5. Model for the coupling of the two pulsations

Based on the previous considerations for each type of interacting binary system
of bubbles, the following models are proposed to replace the coupling between the
differential equations of the two interfaces (RPNNP equations):

1. Non-resonant bubbles have completely uncoupled pulsations and the quantities
εi and ϕi do not vary as the two bubbles approach or separate. This assumption stands
for large and moderate bubble separations (greater than 3 or 4 radii). However, it is
acknowledged as a source of disagreement with the experimental observations for the
close approach and collision stages of the motion of two interacting bubbles.

2. Resonant pairs of bubbles have the property of increasing the amplitude of
the response ε1 of the bubble driven near resonance as the separation distance r
decreases. However, the effect of the secondary waves on the response pulsations is
limited to changes in the amplitude ε1, and the phases ϕi are assumed constant during
the motion. As a result of this assumption, the pressure field acting on the surface of
bubble 1 has an effective amplitude indicated by (13): Aef = A + ρω2R3

02 ε2/r. Next,
equation (6) is used to derive the response amplitude of the pulsation of the bubble
near the resonance, as a function of r:

ε1(r) = ε1∞
(

1 +
k21

r

)
. (21)

In this equation,

k21 ≡ ρω2R3
02ε2

A
= R02θ(q2),

is the coupling coefficient implied by our simple superposition model, ε1∞ is the
response amplitude when no coupling is considered (for an infinite distance between
bubbles), and the function θ(q2) is defined on the frequency index q2 as

θ(q2) ≡ q2
2(

(q2
2 − 1)2 + 4δ2

2q
2
2

)1/2
.

3. Anti-resonant pairs of bubbles have the property of decreasing the amplitude
of the response ε1 of the bubble driven near resonance as r decreases. Following a
similar reasoning as above, based on (6) and (14), ε1 varies with r as

ε1(r) = ε1∞
(

1− k21

r

)
. (22)

4. For the resonant and anti-resonant pairs, the amplitude of the response of
bubble 2 (driven farther from resonance than bubble 1) is assumed constant during
the interaction, since the value of the denominator in function θ(q2) is larger than the
denominator in θ(q1) and, thus, the coupling coefficient k12 is negligible.
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Figure 2. Kinematics of a pair of interacting bubbles.

2.6. Interaction forces for resonant/anti-resonant pairs

After substituting (21) (respectively, (22)) in (20) and considering terms to r−3 only,
the magnitudes of the forces are

F21(r) =F12(r) = −2πρω2R3
01R

3
02Φ(r), (23)

where

Φ(r) ≡ ε1∞ε2

(
m

r2
∓ k21n

r3

)
, (24)

where m ≡ cosϕ − ε1∞ε2 and n ≡ 2ε1∞ε2 − cosϕ. In equation (24), the minus sign
is for resonant pairs and the plus sign is for anti-resonant pairs. The behaviour
of the resonant/anti-resonant pairs of bubbles is governed by the magnitudes of
cosϕ and ε1∞ε2: (a) if cosϕ < ε1∞ε2, then the interaction force of a resonant
pair is repulsive at all distances, while an anti-resonant pair may have an unstable
equilibrium value for r; (b) if ε1∞ε2 < cosϕ < 2ε1∞ε2, then the resonant pair may
have a stable equilibrium value for r, while the interaction force of an anti-resonant
pair is attractive at all distances; and (c) if cosϕ > 2ε1∞ε2, then the resonant pair
features attraction forces at all distances and the anti-resonant pair may have a stable
equilibrium r. In the following, only case (b) will be considered since it is the only
one a fortiori consistent with the assumption cosϕ ∼ O(ε2). Cases (a) and (c) must
include additional assumptions, concerning the lower and the upper limit for cosϕ,
respectively.

For non-resonant pairs, the interaction force can be written in a form similar to
(23), but the function Φ is given by

Φ(r) ≡ ε1ε2 cosϕ

r2
. (25)

3. Dynamics of the motion of interacting bubbles
3.1. Equations of motion

Consider two given spherical bubbles levitated in a liquid. The levitation condition
is provided either by a zero gravity environment, or by balancing the buoyancy with
another force (for instance, a primary Bjerknes force). Assume that the bubbles are
confined to move only along their line of centres, as depicted in figure 2. There is a
forcing pressure field of small amplitude acting on both bubbles, causing only radial
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pulsations of the two interfaces. The changes in the pressure distribution around the
bubbles are modelled as an interaction force which causes the relative motion of the
bubbles.

The drag forces induced by the motion of the bubbles through the surrounding
liquid are not considered in the process of writing the equations of motion, such that
the system is conservative, and one integral of the motion will be the total energy.
The conservative approach to the dynamics of a pair of bubbles allows analytical
solutions for the equations of motion to be obtained, which are compared with
experimental results in § 4. If drag forces are to be taken into consideration, the
theory has to be completed with a drag model, and only numerical solutions are
possible for the equations of motion. Crum (1975) used Moore’s drag law, which
results in a much smaller value for the drag force than the empirical drag coefficient
for non-pulsating bubbles. Crum’s reasoning for using this model was that ‘. . . the
impurities on the bubble surface are broken up by the violent pulsations, allowing
for interfacial slippage and thus reduced drag . . .’ . In figure 11, we compare the
experimental data for the relative velocity of the two bubbles with the predictions
given by the analytical equations derived with the conservative theory. The error due
to neglecting the drag is large only for small bubble separations. For small distances
between the centres, the force field model for bubble–bubble interaction loses its
validity, as well. In one case, we use a numerical solution for the equations of motion
including the drag forces (given by Moore’s drag law). At the forcing frequencies
that are used in the experiments (around 22 kHz), it appears that the drag forces are
slightly overestimated by this model. Since the main goal of our paper is to identify all
possible patterns of motion, we will restrict the following analysis to the conservative
system approach, with no drag forces considered.

The motion of the bubbles is decomposed into a relative motion described by the
distance r(t) between the centres and the motion of the centre of mass of the two
bubbles. Since |F12| = |F21|, the motion of the combined centre of mass remains
unperturbed by secondary Bjerknes interaction. In order to introduce the effects
associated with the acceleration of the liquid surrounding the bubbles, the concept of
virtual mass (or induced mass) is used. For a single bubble the virtual mass is defined
as one half of the mass of the volume of liquid displaced. For a pair of bubbles
engaged in an accelerated relative motion, the virtual masses must be corrected with
terms depending on the instantaneous distance between their centres. However, the
correction terms are proportional to r−4 and higher-order terms (Basset 1888), while
the model which we are proposing in the following is accurate to r−3. The period
of the volume pulsations is small compared with the time scale for the translational
motion of the interacting bubbles. This allows the assumption that the virtual mass
is constant in time and determined by the average radii of the bubbles R0i. Therefore,
in the following reasoning, we will consider the virtual mass of the bubble to be
constant throughout the motion and given by

mi ≡ 2
3
πρR3

0i.

The dynamic equation for the relative motion may be deduced by applying Newton’s
second law for each virtual mass localized by ri (i = 1, 2) and combining these two
equations in a single ODE for r = r2−r1. However, a more convenient approach is that
of a two-body Kepler (gravitational) problem, which uses the Lagrange formalism for
the particle of reduced mass, µ, moving in the interaction force field, at the distance
r from the field source (Goldstein 1959). The definition of the reduced mass of the



Dynamics of two interacting bubbles in an acoustic field 149

pair is

µ ≡ m1m2

m1 + m2

,

where mi (i = 1, 2) are the previously defined virtual masses. After substitution, the
reduced mass of the pair of bubbles is

µ =
2

3
πρR3

01

∆3

1 + ∆3
, (26)

where ∆ ≡ R02/R01 is the size ratio. The Lagrangian for this reduced mass is

L =W−U,
whereW = µu2/2 is the kinetic energy of the relative motion, u is the relative velocity
and U is the potential generating the interaction force field,

F(r) = −∂U
∂r
.

The function U(r) has different forms for non-resonant and resonant/anti-resonant
pairs of bubbles. For a non-resonant pair, the potential energy function is proportional
to 1/r and there is no possibility of a change in the sign of the interaction force, as
the relative motion proceeds:

U(r) = −2πρω2R3
01R

3
02ε1ε2

cosϕ

r
. (27)

For a resonant/anti-resonant pair of bubbles, the potential energy function contains
a term proportional to 1/r, generating an attraction/repulsion force, and a term
proportional to 1/r2, generating a repulsion/attraction component:

U(r) = −2πρω2R3
01R

3
02ε1∞ε2

[
m

r
∓ R02θ(q2)

n

2r2

]
. (28)

The force field generated by the above function may change sign during the motion,
from an attraction to a repulsion (or inversely), and an equilibrium value for r results
from this fact. The Lagrange equation for the system is

∂L
∂r

=
d

dt

(
∂L
∂ṙ

)
.

This leads to the following dynamical equation for the relative motion:

µr̈ = −∂U
∂r
. (29)

Equation (29) is non-dimensionalized using R01 andT ≡ 1/f = 2π/ω as the reference
length and the reference time interval, respectively. The result is the following non-
linear ordinary differential equation of the second order with x ≡ r/R01 the unknown
function, and t̃ ≡ t/T the independent variable:

d2x

dt̃2
= −K

2x2
+
B
x3
, (30)

where K and B have different forms for non-resonant and resonant/anti-resonant
pairs of bubbles.

For a non-resonant pair, the above coefficients are

K = 24π2(1 + ∆3) ε1ε2 cosϕ, (31)
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Figure 3. The potential function U(ξ), for all classes of interacting bubbles.

and

B = 0. (32)

For a resonant pair of bubbles, the coefficients are

K = 24π2(1 + ∆3)m, (33)

and

B = 12π2(1 + ∆3)∆θ(q2) n. (34)

3.2. Dynamics of a non-resonant pair of bubbles

For a non-resonant pair, the dynamical patterns of the pair of bubbles are given by
equation (30), with the coefficients (31)–(32). Equation (30) is further modified by
scaling the distance with K and the time with K2 as

ξ ≡Kx, (35)

τ ≡K2t̃. (36)

The study of the dynamics of the system of two non-resonant bubbles is now reduced
to the study of a nonlinear ODE of the following form:

d2ξ

dτ2
= − 1

2ξ2
. (37)

Equation (37) is used to write the governing dynamical system in a canonic form:

dw

dτ
= −1

2

1

ξ2
,

dξ

dτ
= w. (38)

A potential energy function U(ξ) = −1/ξ and a total energy E(ξ, w) = U(ξ) + w2

are introduced. The total energy function is constant throughout the motion and its
value is established by the initial conditions:

E(ξ, w) = constant = E(ξ0, w0), (39)



Dynamics of two interacting bubbles in an acoustic field 151

1

0

–1
2 4 6 8

w

ξ

10

Outcome: collision
Outcome: separation

E = 0.2
E = 0.1

E = 0

E = –0.1

E = 0.2

E = 0.1

E = 0

E = –0.2

Figure 4. Trajectories in the phase plane for the relative motion of a pair of
attracting (equal) bubbles.

where ξ0 = Kx0, w0 = v0/K = (v20 − v10)/K. Figure 3 shows the variation of the
potential energy function U(ξ) in all cases of interaction – the non-resonant pair case
is represented with a dotted line. The left branch in the ξ < 0 domain corresponds
to repulsion forces (cosϕ < 0), and the right branch to attraction forces (cosϕ > 0).
There are no points of minimum or maximum on these curves, therefore there is no
equilibrium state for a pair of non-resonant bubbles.

The physically meaningful values of r, for two spherical bubbles, are r > R01 + R02,
i.e. the domain defined by x > 1 + ∆. Hence, there is a limiting value for ξ, corres-
ponding to the collision of the two bubbles:

ξlim =K(1 + ∆). (40)

3.2.1. Equal-size bubbles

Figure 4 represents the trajectories of the system (38)–(39) in the mathematical
phase plane (ξ, w) for the particular case of two identical bubbles (∆ = 1). The
limiting value for ξ is shown as a thick line. SinceK > 0 in this particular case, only
values ξ > ξlim = 2K having a physical meaning are investigated. The graph in figure
4 is constructed using the following equation for w:

w = ±(E −U)1/2 = ±(E + 1/ξ)1/2. (41)

Negative total energy (E < 0) leads to collision, regardless of the initial motion of
the system, namely an ‘approach’ (w < 0) or a ‘separation’ (w > 0) in the space (ξ, τ).
Note that, w > 0 implies a real separation motion in the physical space only if the
scaling coefficientK > 0 (attractive forces) and, respectively, implies a real approach
only if K < 0 (repulsive forces). When the initial motion is such that w > 0, the
system will continue to increase the distance between the bubbles until a maximum
separation ξmax = −1/E is reached and after that the effect of the attraction forces
will lead to an approach ending with a collision. Positive total energy (E > 0) leads to
separation to infinity (referred to also as ‘scattering’ of the pair) if initially w > 0, and
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Figure 5. Trajectories in the phase plane for the relative motion of two repelling bubbles.

leads to collision if initially w < 0. A physical significance for the threshold E = 0
can be found by defining an escape relative velocity ve such that E = 0 for any fixed
initial distance x0 = r0/R0 between the two bubbles. E = 0 and v = ve signify the
minimum value for the total energy and, respectively, the minimum positive relative
initial velocity which leads to scattering despite attractive secondary Bjerknes forces.
Any pair of equal-size bubbles (always attracting) will separate if their initial relative
velocity is positive and greater than

ve1 = 2
√

3
ε

x
1/2
0

ωR0, (42)

where ε = ε1 = ε2 is the response amplitude of the two bubbles of equal radii
R0 = R01 = R02. A numerical analysis on the values obtained for ve1 for bubble sizes
between 0.5 mm and 1 mm, forcing frequencies between 1 kHz and 25 kHz and forcing
amplitude A = 300 Pa, shows that the escape velocity is maximum when the pair of
equal bubbles is driven around the resonance (q ≈ 1). For instance, for bubbles with
radii of 0.5 mm, ve1 ranges between 0.25 cm s−1 (far from resonance, q = 0.15) and
78 cm s−1 (close to resonance, q = 1.007).

3.2.2. Unequal-size bubbles, repulsive forces

Assume two bubbles of different sizes, such that bubble 1 is driven above resonance
(q1 > 1), and the other is driven below its resonance frequency (q2 < 1). For low
amplitudes of the forcing, where nonlinear effects are not important, the two bubbles
repel each other and the coefficientK is negative. Consequently, in the mathematical
phase plane (ξ, w), only values ξ < ξlim =K(1 + ∆) have physical meaning. Also, in
this case, w > 0 represents a real approach motion and w < 0 means a real separation
between the bubbles.

Figure 5 contains graphs constructed based on equation (41), valid in all cases. Only
positive values for the total energy E are acceptable, and there is also a threshold
value Em for the energy. For 0 < E < Em, the outcome of the interaction is scattering
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of the pair of bubbles, regardless of the sign of the initial relative velocity. For
E > Em, the bubbles which have an initial approach relative motion will collide,
despite the repulsion due to secondary Bjerknes forces. The threshold value for total
energy is found from the limiting condition Em = U(ξlim). If a phase difference ϕ ≈ π
is assumed between the two pulsations, then K = −24π2(1 + ∆3) ε1ε2 and the result
for Em is

Em =
6

θ(q1)θ(q2)

1

(1 + ∆)(1 + ∆3)
. (43)

Assuming a given initial distance between the bubbles x0 = r0/R01, equation (43)
can predict the minimum relative velocity vm required to cause the collision of two
repelling bubbles:

vm = −
(

6ε1ε2

[(
1− 1

x0

)
− ∆+ ∆2 − 1

x0

∆3

])1/2

ωR01. (44)

3.2.3. Relative velocity

Equation (41) can be transformed back into the physical quantities, such that an
expression for the relative velocity v = dr/dt is obtained:

v = ±
(
v0

2 +
[
6(1 + ∆3)ε1ε2 cosϕ

]
(ωR01)

2

(
1

x
− 1

x0

))1/2

. (45)

The particular case of equal-size bubbles, starting their approach from relative rest
(v0 → 0), at very large separations (x0 →∞) is of special interest for further studies:

vs1 = −2
√

3
ε

x1/2
ωR0. (46)

Substituting (6) in (46) leads to

vs1 = −2
√

3
θ(q)

x1/2

A

ρωR0

. (47)

The function θ(q) has a maximum at q0 = 1/(1− 2δ2). Further analysis of (47) shows
that a pair of equal-size bubbles will reach a higher relative velocity at the same
distance x if their frequency index q has a value near q0. Figure 6 presents vs1(x) in
the case of two equal-size bubbles in water at 20 ◦C, driven at 22.5 kHz with a forcing
amplitude of A = 50 kPa and for various sizes R0.

3.2.4. Analytic solutions

Assume that for a pair of non-resonant bubbles the initial conditions are given
such that the total energy E is fixed. The derivative dτ/dξ is obtained from equation
(41):

dτ

dξ
= ±

(
ξ

Eξ + 1

)1/2

. (48)

Although a general quadrature is possible (and it will be performed later), two limiting
values for E are investigated initially:

(a) E = 0. With this assumption, equation (48) is integrated and the result can be
inverted to

ξ(τ) =
(
ξ0

3/2 ± 3
2
τ
)2/3

. (49)
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Figure 6. Variation with distance of the relative velocity: two equal bubbles
starting at large separations.

(b) E → ∞. Physically, this limiting case corresponds to very large initial relative
velocities, since the potential energy has a finite maximum value at ξlim 6= 0. The
right-hand side of equation (48) is approximated with ±1/E1/2, resulting in

ξ(τ) = ξ0 ± 1

E1/2
τ. (50)

When E is different from these limiting values, equation (48) is integrated to

f(ξ) = f(ξ0)± τ. (51)

Equation (51) is, in general, too complicated to be inverted to ξ = ξ(τ) as above. The
form of the function f(ξ) is different when the sign of the total energy function is
plus or minus:
E > 0 :

f(ξ) =
1

E

(
(ξ(Eξ + 1))1/2 +

1

2E1/2
ln

∣∣∣∣ (E + 1/ξ)1/2 − E1/2

E1/2 + (E + 1/ξ)1/2

∣∣∣∣) ; (52)

E < 0 :

f(ξ) =
1

E

(
(ξ(Eξ + 1))1/2 − 1

E
arctan

1

|E|
(

ξ

Eξ + 1

)1/2)
. (53)

3.3. Dynamics of a resonant pair of bubbles

As mentioned in § 2.6, only the cases of resonant pairs of bubbles satisfying the
additional condition

ε1∞ε2 < cosϕ < 2ε1∞ε2 (54)

are considered. This condition is also necessary for the existence of a stable equilibrium
separation. The sign of the interaction forces changes from positive (repulsion at
smaller distances) to negative (attraction at larger distances) when the bubbles are
at this separation distance. A direct numerical analysis of different pairs of resonant
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bubbles, driven at low forcing amplitude, shows that the two bubbles must have nearly
equal radii in order to satisfy the condition expressed in (54). Therefore, the size ratio
must be close to one: ∆ ≈ 1. The admissible range for ∆, to obtain a resonant pair
which satisfies (54), is wider around 1 as the forcing amplitude A is increased. The
equation of motion is (30), with the attraction coefficient K given by (33) and the
repulsion coefficient B given by (34). The mathematical space to be used is defined
by the new variables (τ, ξ):

ξ ≡ γx, (55)

τ ≡ B̃γ2t̃, (56)

where the scaling parameter

γ ≡ KB , (57)

is the ratio between the attraction and the repulsion coefficients in the interaction
forces. The study of the relative motion of a pair of resonant bubbles is reduced to
the study of nonlinear ODE

d2ξ

dτ2
=

1

2

[
− 1

ξ2
+

2

ξ3

]
. (58)

A canonical form of the dynamical system is derived from equation (58):

dw

dτ
=

1

2

[
− 1

ξ2
+

2

ξ3

]
,

dξ

dτ
= w. (59)

In this case, the potential function has the form U(ξ) ≡ −1/ξ + 1/ξ2. The total
energy is defined as E(ξ, w) ≡ U(ξ) + w2 and it is constant throughout the motion,
determined by the initial conditions of the problem (ξ0, w0).

Figure 3 presents the potential function of a resonant pair as a solid line. Since
condition (54) was assumed true, only the positive domain for ξ has to be studied. The
graph shows the existence of a minimum point for U(ξ) in the positive domain for ξ,
which implies the existence of a stable equilibrium value for the separation distance.
Figure 3 contains also, as a dot-dashed line, the potential of an anti-resonant pair
of bubbles for cosϕ < ε1∞ε2, when a maximum for U(ξ) in the positive-ξ domain
is present; thus an unstable equilibrium value for the distance may occur. A simple
study of U(ξ) provides (i) a zero at ξ = 1; (ii) zero limit for ξ → ∞; (iii) a minimum
point at ξr = 2, where Umin = − 1

4
(i.e. the interaction forces are zero); and (iv) an

inflection point at ξa = 3, where the attraction forces have a local maximum. The total
energy function E(ξ, w) = U(ξ) + w2 can have only values greater than Emin = − 1

4
,

which corresponds to a state of stable equilibrium at rest, for ξr = 2.
Figure 7 shows the possible trajectories of the system in the phase plane (ξ, w) for

different total energies E, and in the positive semiplane ξ > 0. The graph is based on
the relation

w = ± (Eξ2 + ξ − 1)1/2

ξ
. (60)

The thick vertical line designates the collision condition ξlim = γ(1 + ∆) ≈ 2γ.

3.3.1. Negative total energy

Consider the equation

w = 0 ⇔ Eξ2 + ξ − 1 = 0. (61)
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Figure 7. Trajectories in the phase plane for the relative motion of a pair of resonant bubbles.

A simple root analysis shows that equation (61) has two positive roots, ξ1 and ξ2,
for any possible negative value of the total energy. The product and the sum of the
roots are both equal to the positive quantity −1/E. The evolution of the system is
bounded by these two values ξ2 < ξ1, and the trajectory is a closed curve in the phase
plane. Hence, a periodic motion (translational oscillations) may occur. However, if
the smaller root ξ2 is less than ξlim, then the two bubbles will collide during the first
cycle of the oscillations. With the approximation ∆ ≈ 1, the condition for such a
collision is written as

E >
1− 2γ

4γ2
. (62)

Combining (62) with the assumed case − 1
4
< E < 0, the motion of a given pair of

resonant bubbles (γ is fixed) can be predicted if the initial conditions (E) are known.
(a) If 0 < γ < 1

2
and − 1

4
< E < 0, repulsion forces are strong enough to maintain

the two bubbles separated in a periodic motion between the limits

ξ1 = −1 + (1 + 4E)1/2

2E
(63)

and

ξ2 = −1− (1 + 4E)1/2

2E
. (64)

The equilibrium value is ξr = 2. Two amplitudes, α1 and α2, can be defined with
respect to this ξr:

α1,2 ≡ ξ1,2 − ξr = − (1 + 4E)1/2(1± (1 + 4E)1/2)

2E
. (65)

Only in the particular case of E = − 1
4

(stable equilibrium at rest), are the two ampli-
tudes both equal to 0, otherwise they have different values. Their sum is 2α ≡ α1 +α2 =
−(1 + 4E)1/2/E and gives the amplitude X for this periodic motion: 2X ≡ 2α/γ. Sub-
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stituting γ back into physical quantities:

2X = ∆θ(q2)

(
2ε1∞ε2 − cosϕ

cosϕ− ε1∞ε2

)(
1

4|E|2 −
1

|E|
)1/2

. (66)

Equation (66) shows that the amplitude of oscillations depends on the characteristics
of each bubble pulsation (ϕ, εi, q2), on the bubble size ratio ∆, and unlike the linear
oscillator, on the initial conditions, through the total energy E.

(b) If 1
2
< γ < 1 and − 1

4
< E < (1− 2γ)/(4γ2), again a periodic motion between ξ2

and ξ1 is maintained. Relations (63)–(65) remain valid.
(c) If 1

2
< γ < 1 and (1 − 2γ)/(4γ2) < E < 0, the two bubbles collide during the

first cycle of the periodic motion imposed in these conditions.
(d) If γ > 1, repulsion forces at small distances are not strong enough to consume

the kinetic energy acquired in the approach motion and collision occurs for any
− 1

4
< E < 0, during the first cycle of the oscillation. In the phase plane (ξ, w) this

subcase corresponds to having the limiting line to the right of the point ξr = 2.

3.3.2. Positive total energy

In this case, the equation Eξ2 + ξ − 1 = 0 has a positive root ξ1 = ((1 + 4E)1/2 −
1)/(2E) and a negative one ξ2 = −((1 + 4E)1/2 + 1)/(2E). The only possible values
for bubble spacing are ξ > ξ1 > 0. The trajectories in the phase plane (ξ, w) show
that for an initial approach motion the two bubbles have enough kinetic energy to
overcome the repulsion forces and the motion ends with their collision. For an initial
separation motion the kinetic energy is enough to overcome the net attraction force
at large distances and the bubbles continue to separate toward an infinite distance.
The value of the attraction/repulsion scaling coefficient γ determines if the relative
velocity has a maximum absolute value during the motion (during both approach
and separation patterns). The following cases are considered.

(a) If 0 < γ 6 1, |v| has a maximum |v|r for ξ = ξr , when the potential energy is
minimum.

|w|r = (E +Umin)
1/2 =

(4E + 1)1/2

2
. (67)

Substituting back in the dimensional relative velocity:

|v|r =

(
3
(
1 + ∆−3

)
(4E + 1)

2ε1∞ε2 − cosϕ

)1/2

(cosϕ− ε1∞ε2)
A

ρωR01

. (68)

After the distance becomes larger or smaller than ξr , the two bubbles move towards
collision or towards infinite separation at relative velocities smaller than |v|r .

(b) If γ > 1, relative velocity continuously increases as the two bubbles approach
each other and, respectively, decreases continuously as they move away from each
other.

3.3.3. Analytic solutions

A general analytic relation between time and bubbles spacing is found starting with
the differential equation

dτ

dξ
= ± ξ

(Eξ2 + ξ − 1)1/2
. (69)

There are two limiting cases with respect to the total energy:
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(a) E = 0. The class of initial conditions (x0, v0) which correspond to zero total
energy is described by

|v|0 =

(
6(1 + ∆3)ε1∞ε2(cosϕ− ε1∞ε2)

1

x0

(
1− 1

γx0

))1/2

ωR01. (70)

In this particular case, the two roots are equal, ξ1 = ξ2 = 1, and a relatively simple
relation of the type

g(ξ) = g(ξ0)± τ (71)

is obtained through direct integration of (69), where

g(ξ) = 2
3
(ξ + 2)(ξ − 1)1/2. (72)

(b) E → ∞. The solution is the same as the solution derived for a non-resonant
pair at high energies:

ξ(τ) = ξ0 ± 1

E1/2
τ. (73)

The explanation for obtaining the same solution resides in the fact that for large initial
velocities (large E), Bjerknes secondary forces have a small effect on the variation of
relative velocity.
For finite non-zero values of the total energy function, the above approximations are
not valid and (69) is integrated in the general form, which allows only for an implicit
study of ξ(τ):

h(ξ) = h(ξ0)± τ. (74)

The function h(ξ) has different forms for negative or positive total energy:
E > 0, ξ > ξ1 > 0:

h(ξ) =
1

4E
ln

(
2ξ − 2

(
ξ2 +

1

E
ξ − 1

)1/2

+
1

E

)
+

1

2

(
ξ2 +

1

E
ξ − 1

)1/2

; (75)

E < 0, 0 < ξ2 < ξ < ξ1 (the roots ξ1, ξ2 are given by equations (63)–(64)):

h(ξ) =
1

|E|
[

1

|E|1/2 arctan

(
ξ − ξ2

ξ1 − ξ
)1/2

− (Eξ2 + ξ − 1)1/2

]
. (76)

When ξ → ξ1 (maximum separation distance between the bubbles), the second term
in h(ξ) can be neglected, since

lim
ξ↗ξ1

(Eξ2 + ξ − 1)1/2 = 0,

lim
ξ↗ξ1

arctan

(
ξ − ξ2

ξ1 − ξ
)1/2

=
π

2
.

The first term on the right-hand side of equation (76) can be easily inverted and an
explicit relation for ξ = ξ(τ) is obtained:

ξ(τ) ≈ ξ2 + ξ1 tan2 cτ

1 + tan2 cτ
, (77)

where c ≡ |E|3/2. An equivalent form for h(ξ) can be derived through the integration
of equation (69):

h(ξ) = − 1

|E|
[

1

|E|1/2 arctan

(
ξ1 − ξ
ξ − ξ2

)1/2

+ (Eξ2 + ξ − 1)1/2

]
. (78)
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Figure 8. Acoustic levitator.

This form is used to derive an explicit relation for ξ = ξ(τ) when ξ → ξ2 (minimum
separation distance between the bubbles):

ξ(τ) ≈ ξ1 + ξ2 tan2 cτ

1 + tan2 cτ
. (79)

The two limits of relation ξ = ξ(τ), (77) and (79), provide the period T of the
oscillatory pattern of two resonant bubbles:

T ≈ π

c
= π|E|−3/2

. (80)

An exact value for this important time scale cannot be obtained from the general
relation (74), due to the complicated form of the function h(ξ). However, the approxi-
mate value (80) can be very useful in estimating the frequency of the translational
oscillations, ν, defined as ν ≡ A/ρωR2

01 · b̃γ2/T, or after substitution:

ν ≈ 4

π
θ(q2)

(
cosϕ− ε1∞ε2

2ε1∞ε2 − cosϕ

)2(
3

(
∆2 +

1

∆

)
ε1∞(2ε1∞ε2 − cosϕ)

)1/2

× |E|3/2
(

A

ρR2
01

)1/2

. (81)

For a known forcing (A, f) and a given pair of resonant bubbles (ϕ, εi, q2, R0i, ∆), the
oscillation frequency varies with the initial conditions of the motion, through the
value of the total energy E(ξ0, w0).

4. Experiments
4.1. Experimental setup

Since the oscillating type of bubble–bubble interaction has not been reported earlier,
we have conducted our own experiments to support the theoretical findings. In
the following subsections, the experimental apparatus is described along with the
measurement procedures, and the experimental findings are presented in comparison
with the theoretical predictions.

Figure 8 is a schematic representation of the acoustic levitator. This levitator
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consists of a tank with transparent walls of dimensions (11 × 11 × 8 cm), designed
such that stationary sound waves can be obtained at applied frequencies of 20–
25 kHz. The acoustic field is produced by a thin-wall hollow-cylinder piezoceramic
transducer whose resonance frequency is 22.5 kHz. For this frequency, the level of
distilled water inside the tank which ensures a stable levitation of the bubbles is
63 mm. The maximum radius of a levitated air bubble is 3.5 mm. The sinusoidal
signal is generated by a Hewlett–Packard 33120A Function Generator and amplified
by a Hewlett–Packard 6824A Amplifier. The signal is checked with a Gould 4050
Oscilloscope at the exit of the amplifier for any distortions.

A stationary sound wave is formed inside the tank with its minimum pressure plane
located approximatively at the middle of the water depth. The air bubbles are levitated
at this location. Bubble pairs with different initial distances are tested. The position of
each bubble is accurately determined with an Edmund Scientific laser pointer ML-211
and a graded transparent grid. Their motion is recorded and then analysed using a
Kodak EktaPro 1000 Motion Analyzer, choosing the rate (frames/second) between
60 and 1000, and adjusting the magnification on the screen with the Chinon-Hoya
Zoom System.

The acoustic pressure distribution inside the tank is measured using a small hy-
drophone (3 mm in diameter), the oscilloscope and its attached Gould Waveform
Processor 150. More than 300 points at three levels inside the tank are used to map
the amplitude of the sound field. In addition, the flow field around the bubbles has
been investigated with dye techniques and found to be insignificant. Therefore, the
only cause of the relative motion of the pair of bubbles is their secondary Bjerknes
interaction.

In a typical experiment, two air bubbles of different radii are manually injected by
an hypodermic needle at different separation distances and their motion is recorded
and played back frame-by-frame. The reticle provided by the EktaPro system is used
to determine the radius and the location of the centre of mass for each bubble.
The motion of the pair is studied only after the initial vertical motion due to the
injection has died down. The applied frequency is kept constant at 22.5 kHz. At
this high frequency, we were unable to measure with accuracy the amplitude of the
volume oscillations of the bubbles. Therefore, this quantity is determined indirectly
by balancing the buoyancy and primary Bjerknes forces on each bubble (Eller 1968).

4.2. Principal patterns of interaction

There are two principal patterns of interaction observed in the experiments.
(i) Pairs of large bubbles (radius between 0.5 mm and 3 mm) show mutual attraction

leading to collision and coalescence. Figure 9 presents photos of video frames of this
kind of interaction.

(ii) Pairs of small bubbles (radius around 0.15 mm) display an oscillatory motion
along their line of centres.

4.2.1. Attraction/collision

Figure 10 presents bubble spacing as a function of time for several experiments in
which the outcome was the collision of bubbles. The distance between the centres of
the two bubbles is normalized with the initial distance r0 and the time is normalized
with the time scale r0/v0, derived from a uniform relative motion started with v0.
The amplitude of the forcing and the radii of the bubbles are indicated in table 1;
the forcing frequency is 22.5 kHz for all four experiments. Table 1 also contains
experimental information concerning the initial bubble spacing and velocity. The first
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t = 0 ms

26 ms

127 ms

211 ms

235 ms

245 ms

255 ms

Figure 9. One-dimensional relative dynamics of two attracting bubbles.

Experiment R01 (mm) R02 (mm) A (kPa) r0 (mm) v0 (mm s−1)

A 2.402 1.952 33 42.79 18.9
B 1.583 1.417 21 28.67 26.3
C 1.661 0.779 18 12.82 42.3
D 1.546 1.289 15 26.55 43.7

Table 1. Experimental data–pairs of attracting bubbles.

stage of the relative motion of two bubbles is characterized by the dominant effect of
the initial kinetic energy, such that v0 is almost unchanged. This stage lasts longer for
large initial velocities and small forcing amplitudes (experiment D). The second stage
of the relative motion is characterized by the increasing acceleration induced by the
interaction between the bubbles. The larger is the forcing amplitude, the higher are
the accelerations towards the collision of the bubbles, as indicated by the changes in
the slope of the experimental curves: A>B>C>D.

The velocities of the bubbles are computed based on their recorded locations, using
a numerical differentiation procedure with unequal time steps. Figure 11 presents the
variation of relative velocity v = v2 − v1 with the distance r = r2 − r1 between the
bubbles, for both experimental (symbols) and theoretical predictions (lines). The two
sets of curves are similar; however, the conservative model, which does not consider the
drag forces, over-predicts the values for the relative velocity. The differences between
the theoretical and the experimental values increase as the motion proceeds and the
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Figure 10. History of the locations of each bubble.
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Figure 11. Relative velocity of the bubbles: variation with distance apart.

separation distance decreases. They are significant especially after the separation of
the two interfaces becomes smaller than 3 radii, when both the drag effects and the
coupling between the bubble pulsations have significant influence upon the motion.

4.2.2. Oscillations

Figure 12 shows the experimental data obtained from the interaction of two bubbles,
practically of the same size (radii of 0.146 and 0.137 mm). For this bubble size, the
resonance frequency for pure radial volume oscillations is 22.482 and 23.972 kHz,
respectively (both close to the applied frequency of 22.5 kHz). The frequency indices
of this pair of bubbles are q1 = 1.00079 and q2 = 0.93861. The forcing amplitude is
small compared with previous experiments (where levitation of larger bubbles was
required), A = 1.35 kPa. The locations of the bubbles show a cyclic motion, featuring
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Figure 12. Cyclic motion of a pair of bubbles driven close to their resonance frequencies.

1

5

6

0 1 2 3

Experiment
Model prediction

x
=

r 
(m

m
)

t (s)

2

3

4

Figure 13. Experimental data for oscillations in the x-direction and theoretical predictions for this
one-dimensional periodic motion.

a slow approach stage along the horizontal x-direction and a violent repulsion which
takes the bubbles out of the equilibrium plane. In the repulsion stage the bubbles go
through considerable shape deformations due to large accelerations.

Figure 13 presents the history of these translational oscillations in the x-direction
only, by showing the variation in time of the separation distance between their
centres. The vertical y-motion is influenced by the action of the primary Bjerknes
forces and thus must be separated from the effects of the smaller secondary Bjerknes
forces. Figure 13 presents five cycles of the motion, lasting 3 s, which correspond
to a frequency of 1.67 Hz. The oscillations of the distance between the centres are
bounded by a minimum value of 14 radii and a maximum one of 29 radii. The
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Figure 14. Relative velocity of oscillation: variation with distance apart.

theoretical predictions of the proposed model for the corresponding resonant pair of
bubbles engaged in oscillatory motion are also presented in figure 13 for comparison.
Theoretical values predicted for the oscillatory mode of relative motion are frequency
1.58 Hz, minimum separation at 12.4 radii, maximum separation at 29.5 radii, in good
agreement with the experimental values. However, the difference between the history
of motion recorded by the experiment and the history predicted by the conservative
model is significant for the relative velocity. The separation motion features relative
velocities six to eight times higher than the approach stage. This ‘hysteresis’ in relative
velocity is not predicted by the theory. An explanation for this phenomenon may
be the fact that the separation motion starts at smaller bubble spacings, with much
larger accelerations generated by the term proportional to r−3 in the interaction
field. This fact triggers, especially for the coupled oscillations of a resonant pair
of bubbles, shape oscillations and a significant departure from the spherical shape
assumed in the derivation of the model. Therefore, during the separation phase,
spherical-cap and star-like shapes, and even tiny breakups of the bubbles are observed.
This is the first experimental observation which verifies the computational work by
Pelekasis & Tsamopoulos (1993a, b), regarding the spherical-cap and star-like shapes
of increasingly accelerated interacting bubbles. As the separation motion slows down
after the sign change in the interaction field, and under the damping effect of the liquid
viscosity (drag forces), the bubbles regain their spherical shape and the motion turns
smoothly to approach, at large bubble spacings, under the influence of the r−2 term.

Figure 14 shows the variation of the relative velocity with the separation distance
r. Theoretical prediction of v(r), given by our conservative model (the dotted line) is
inserted for comparison with the experimentally deduced velocity (the diamonds). The
spread of the experimental data is attributed to the variations in the instantaneous
levitation depth of each bubble. In other words, the bubbles do not move exactly in
one horizontal plane. There is a slight three-dimensionality in the flow pattern, which
may explain the spread in the data. The loss of spherical shape explains the y-motion,
since for distorted shapes of the bubble, the levitation force (primary Bjerknes force)
can be higher or lower than the gravitational buoyancy.
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Non-resonant
Pair type Resonant

Phase shifts ϕi 0 6 ϕ1, ϕ2 � π/2 0 6 ϕ1 � π/2 and π/2� ϕ1 6 π and
or π/2� ϕ2 6 π ϕ2 → π/2
π/2� ϕ1, ϕ2 6 π

Interaction force −a/r2 a/r2 −a/r2 + b/r3

Effect Attraction Repulsion Stable equilibrium point

Table 2. Classification of the binary systems of bubbles.

5. Summary and conclusions
The dynamic patterns of a pair of interacting bubbles are determined by the

characteristics of the responses of the two interfaces to the forcing sound wave. While
previous linear theory of secondary Bjerknes forces used an undamped model for
the radial oscillations of the bubbles, our approach considers viscous, thermal and
acoustic damping effects in bubble pulsations.

The frequency index of each bubble (q), defined as the ratio of the forcing frequency
to the resonance frequency of the bubble, is the governing parameter for the values
of the phase shifts ϕi and response amplitudes εi. A bubble with q < 1 is driven
below its resonance frequency. This bubble oscillates out of phase with respect to the
forcing wave and its emitted secondary pressure field increases the amplitude of the
primary pressure field. A bubble with q > 1 is driven above its resonance frequency.
This bubble oscillates in phase with the forcing and its emitted secondary pressure
field decreases the amplitude of the primary pressure field. Table 2 summarizes the
classification of the binary systems of bubbles based upon their values of frequency
indices. The new model proposed in our paper reduces to the previous linear theories
for non-resonant pairs of bubbles. For this category, there is no coupling effect
considered between the two oscillators. The other two classes of bubble pairs, namely
resonant and anti-resonant, show significant coupling effects. The response amplitude
of the bubble driven close to resonance varies with the separation distance. This
variation is implemented in the general formula for the secondary Bjerknes forces,
resulting in a new mathematical description of the interaction force field. Beside the
r−2 term, a term proportional to r−3 appears in the new formula for the interaction
force. As a result, a sign change may appear for the interaction force, and a new
pattern of relative motion is possible: the oscillations of the two bubbles along their
line of centres, around a stable equilibrium position.

The non-resonant pairs of bubbles show only two patterns of interaction: attraction
and repulsion. However, the outcomes of such interactions may depend on the initial
conditions (separation and relative velocity), through the value of the total energy
E. Tables 3(a) and 3(b) provide this dependence for attracting and repelling non-
resonant bubbles, respectively. In table 3(a), the escape velocity, v̂e, is defined as the
initial relative separation velocity necessary for two attracting bubbles to overcome
the effect of their attraction and separate an infinite distance (scatter):

v̂e =
(
6(1 + ∆3) ε1ε2 cosϕ

)1/2 1

x
1/2
0

ωR01. (82)

The collision velocity, vm, is defined as the initial relative approach velocity necessary
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Energy level Initial relative velocity Outcome of interaction

(a) E < 0 −v̂e < v0 < v̂e Collision
E = 0 v0 = v̂e Scattering, v∞ = 0
E > 0 v0 > v̂e Scattering, v∞ > 0
E > 0 v0 < −v̂e Collision

(b) E > 0 −vm < v0 Scattering, v∞ > 0
E = Em > 0 v0 = −vm Scattering, v∞ = 0
E > Em > 0 v0 < −vm < 0 Collision

Table 3. Outcomes of interaction for non-resonant (a) attracting bubbles and
(b) repelling bubbles.

for two bubbles to collide at zero velocity, although they repel each other:

vm =

(
6ε1ε2 cosϕ

[
−
(

1− 1

x0

)
+ ∆− ∆2 +

1

x0

∆3

])1/2

ωR01. (83)

The particular case of two equal-size bubbles, always attracting each other, is analysed
separately in order to understand the influence of the other parameters of the problem.
The relative velocity of two equal-size bubbles, interacting through secondary Bjerknes
forces, is found to be proportional to their size, the response amplitude and the forcing
frequency, and inversely proportional to the square root of the separation distance. The
relative velocity has a maximum value at q0 = 1/(1−2δ2), a value slightly higher than
the resonance value 1, depending on the damping coefficient at bubble interface δ.

The resonant pairs of bubbles may show a sign change in the interaction force, from
attraction at large distances to repulsion at small distances, featuring a stable equi-
librium point. The anti-resonant pairs may show a reverse sign change in secondary
Bjerknes forces, from repulsion at large distances to attraction at small distances, fea-
turing an unstable equilibrium point. The ratio of attraction to repulsion coefficients
in the new formula for the interaction force, γ, and the total energy, E, are the param-
eters which govern the outcomes of the relative motion for a resonant/anti-resonant
pair of bubbles. Table 4 contains a complete description of the patterns of motion
and the outcomes for a resonant pair of bubbles for various scaling parameters γ and
total energy E. The limiting values for the initial relative velocity are in this case ve,
defined by the condition E = 0, and vp, defined by the condition of collision at zero
velocity:

ve ≡
(

6(1 + ∆3)ε1∞ε2(cosϕ− ε1∞ε2)
1

x0

(
1− 1

γx0

))1/2

ωR01, (84)

and

vp ≡
(
γx0 − 1

x0
2

+
1− 2γ

4

)1/2 (
3∆(1 + ∆3)θ(q2)ε1∞ε2

2 (2ε1∞ε2 − cosϕ)
)1/2

ωR01.

(85)

An analysis of tables 2 and 3, focusing on the outcome of interaction, rather than on
the sign of the interaction forces, can be summarized as follows.

1. Non-resonant pairs of bubbles, characterized by γ → ∞ (since there is no
repulsion term), evolve toward collision or scattering. Low-energy non-resonant pairs
will collide or scatter, in the sense determined by the interaction force. High-energy
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Initial relative Relative velocity Outcome of
γ Energy level velocity variation interaction

γ < 1/2 E < 0 −ve < v0 < ve Periodic Oscillations

γ < 1/2 E = 0 v0 = −ve v has a maximum Collision
before collision

γ < 1/2 E = 0 v0 = ve v has a maximum at Scattering at
finite separation v∞ = 0

γ < 1/2 E > 0 v0 < −ve v has a maximum Collision
before collision

γ < 1/2 E > 0 v0 > ve v has a maximum at Scattering at
finite separation v∞ > 0

1
2
< γ < 1 E < Ep −vp < v0 < vp Periodic Oscillations

1
2
< γ < 1 Ep < E < 0 −ve < v0 < −vp Collision during the Collision

or second half of the first
vp < v0 < ve cycle

1
2
< γ < 1 E = 0 v0 = −ve v has a maximum Collision

before collision
1
2
< γ < 1 E = 0 v0 = ve v has a maximum at Scattering at

finite separation v∞ = 0
1
2
< γ < 1 E > 0 v0 < −ve v has a maximum Collision

before collision
1
2
< γ < 1 E > 0 v0 > ve v has a maximum at Scattering at

finite separation v∞ > 0

1 < γ E < 0 −ve < v0 < ve Collision during the Collision
first half of the first
cycle

1 < γ E = 0 v0 = −ve v increases to collision Collision

1 < γ E = 0 v0 = ve v decreases towards Scattering at
v∞ v∞ = 0

1 < γ E > 0 v0 < −ve v increases to collision Collision
1 < γ E > 0 v0 > ve v decreases towards Scattering at

v∞ v∞ > 0

Table 4. Outcomes of interaction for a pair of resonant bubbles.

pairs, moving initially in the opposite sense with the interaction force, will result in
collisions of repelling bubbles and respectively, scattering of attracting bubbles.

2. Resonant pairs of bubbles with γ > 1 behave same as the non-resonant pairs;
only the magnitudes of the limiting conditions are different.

3. Resonant pairs of bubbles with 0 < γ < 1
2

or with 1
2
< γ < 1 present a new

feature with respect to the above categories: intermediate-energy pairs maintain a
periodic relative motion. The period and the amplitude, of these nonlinear oscillations
are determined in our theory as functions of the forcing amplitude, the forcing
frequency, and the total energy.

The theoretical findings are verified by experimental studies. The experimental
findings reinforce the previous studies with new data about the attraction motion
of two levitated bubbles, both driven above their resonance frequency, starting at
relatively large distances. The relative velocity profile obtained experimentally is
compared with the analytic solution. There is a good agreement between the analytic
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solution and the experimental results for large bubble separations. However, when
the two bubbles are close, i.e. the distance between their centres is less than 3–4
radii, the effect of the drag forces, which are not considered in the conservative
model used to derive the analytic solution, becomes significant, and the theory over-
predicts the relative velocity near the collision moment by a factor of 1.5–2. The
existence of the translational oscillations of the two bubbles along their line of
centres, predicted by the new model, is verified by experiments involving pairs of
nearly equal bubbles, driven close to their resonance frequency. The amplitude and
the frequency of these oscillations are measured and they are in good agreement
with the theoretical predictions. However, the experiments reveal a phenomenon of
hysteresis between the approach and the separation stages of the oscillations, which
cannot be explained by the conservative model used to study the bubbles relative
motion. A qualitative explanation of this hysteresis is based on the deformations
of the bubbles from their assumed spherical shape, which are observed during the
experiments.

This work was supported by the NASA Microgravity Program under the grant
number NAG3-1620.
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